SOLUTION OF AN INVERSE PROBLEM OF HEAT
CONDUCTION BY ITERATION METHODS

0. M. Alifanov UDC 536.24.02

An iteration scheme for determining nonstationary heat flux is constructed for the linear case.
The scheme is based on the two gradient slope methods.

We consider the following inverse problem for the homogeneous linear equation of heat conduction in
the region {0 <x <b, 7> 0}. The heat flux function g(7) at the left boundary of the region is to be deter-
mined from the known temperature (1) and the heat flux Q(7) at the right boundary. Any problem of deter-
mination of a boundary function can be reduced to this form when £(7) is known at an inner point 0 <xy <b
and the boundary condition is specified at the point x =b. For this purpose it is necessary to solve the
corresponding boundary value problem in the region x; <x < b,

Thus we have (it is assumed that the reduction to the initial condition has been made)
dT (g, Fo) _ 0*T (&, Fo)

, 0<g<l, Fo>yo, 1
3o per < E<< 0> (1)
A 9T (1, Fo) (3)
Al Sl = F
b 7 Q (Fo),
T (1, Fo) = f(Fo), (4)
A 8T (0, Fo)
L A Y g (Fo) —2?
5 5 g (Foy —?2, (5)

where Fo = a1/b%, £ = x/b.

We interpret the incorrectly formulated problem (1)-(5) as a problem of optimum control, i.e., to
choose the control q(Fo) from the condition of minimum deviation of T(g(Fo), 1, Fo) = T*(Fo) from the
given function {(Fo) in the metric of space L, (square integrable functions):

For,
J(@) = | [T*(Fo)— [ (Fo)* dFo — min. (6)
s q

We shall solve the formulated extremum problem by the gradient methods. For this purpose we
write out the formula for the gradient of functional (6).

Let us assume that q(Fo) undergoes an increment Aq(Fo). Then the temperature T(¢, Fo) changes
by an amount AT(£, Fo) which satisfies the conditions

OAT (§, Fo)  O°AT (&, Fo) (7)
3Fo = e . Q<§<l, Fo>0,
AT €, 0) =0, (8
OAT (1, Fo) _ (9
A ’
_i M — A(] (FO), (10)
b B8
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The functional J gets the corresponding increment
N=1T(g+Ag)—J(g) =J (T +AT)—I (D).

Hence neglecting quantities of the second order of smallness we obtain
Fop,
AJ = § 2{T* (Fo) - f (Fo)] AT (1, Fo)dFo. (11)
6 - '
Following [1] we write the boundary value problefn conjugate to (7)-(10):
(& Fo) _ %, Fo)

- , 0 1, 0<Fo<Fo,, 12
3F P <§§ < Fo<Fo (12)
¥ Fo,) =0, (13)
93%;_‘2 9T (Fo) — [ (Fo)l, (14)
0, Fo _, (15)
o '
‘Then for the increment of functional (11) we get
- Fop, §=l 1 d Fop,
o, Fo) 5‘ y 9%, Fo)
= Fo) 2% "9 yFo| = | dt— | AT(, Fo)-= -2 4F
AJ &AT(&, o e o] o (&, Fo) === dFo
. =0 ¢ ) .
from which we obtain
A= \1 (&) ds -+ Y L, ® dz, (16)
where
Fo,,
LE = 5 ATE, F)f)—‘l’(;g—-—szl o,
0 | .
Fop, .
. AAT (£, Fo) 0¥ (&, Fo)
, () = dF
no= | =52 =

)
Next making use of the conjugate equation (12) and integrating by parts with (8) and (13) taken into considera-
tion, we have
Fo,, ' Fop,
Lo =— [ are Fo BE I gro ( V. Fo)

0

OAT €, Fo) 4 Fo.
dFo

Changing the order of integration and passing on to the spatial derivative AT(£, Fo) from (7) we ob-

tain
i Fo,, 1
(nee-= SdFoﬁ(&F)M ds.
0 0 0 ) 9%
Integrating by parts with the use of (9) and (10) we get
1 Foy,
S I,®) dt = ——f 0, Fo) Aq (Fo) dFo— j (®) d&. (17
4]
From (16) and (17) we get
Fop,

=Tb fw(o, Fo) Aq (Fo) d Fo.
[}

In Hilbert space Lz {1}
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Foy,

A = [ I’ (g) Ag (Fo) d Fo.

0

Thus the expression for the gradient of functional (6) is
, b ;
I g) = y ¥ (0, Fo). (19)

For constructing the iteration approximations to the desired heat flux function q(7) we shall use the
methods of steepest descent and conjugate gradients. ’

In the first case starting from a certain "test" solution q’(Fo) the subsequent approximations are
found from the formula

Fr=g—J @, k=01, ... (19)

The coefficient B, which determines the step in going from qk to qk‘H, is found from the condition of

minimum of J(qkﬂ):

For, F°1m
min f [T (¢* —BuJ™ —fI*dFo = mﬁiﬂ § [—BAT (J'®) 4- T (4% —[1*d Fo.
By i
Hence we obtain

Fop

[ ATUHIT (¢ —f1dFo
0

ﬁh = [
g AT2 (I d Fo

0

In using the method of conjugate gradients [2] the sequence {qk} is sought in the following form:
qlzﬂ:qk__ﬁkpk’ k=0, 1, ..., (20)
where

pk — J/k __1_ thk_ly
Fop,
{ 17 (Fo)12d Fo

o

V= Fo?n
[ 1 (Fo)2d Fo
0

The coefficient gy is found from the condition
minJ (g% — Bpk).
B
According to the superposition principle the solution of the second boundary value problem for the

linear homogeneous heat conduction equation with boundary functions d;(Fo) and q,(Fo) can be written in
the form :

Fo Fo
a9 (&, Fo— k ot Fo
0, Fo):jqz (’1>——(§5Hdn (g B0 aE,F Fo—u) .
(o]

Y

0

where 4(Fo) is the solution of problem (1), (2), (3), (5) with unit heat flux at one boundary of the plate and
zero at the other. -

Using a suitable approximation method [3] we obtain the following formula for computing ®(£) at the
n-th instant of time:

n
) o N 5 | pu B -
0n@) =X daidfl iy ® + Fa0p, oy @, n=1,2 ...m

f=] i=l

(21)

where

— b ) - b
Qi = ‘27 (Gri1 i Gus)s o = o (Gaioq G-
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J ' » ‘ Below we shall need @,(0) and @, (1). In this case

Ny .
ﬁq;w):—zvmx(@*[m}
=0 .

’ - —!—icD*[ P! ])=
\ : v AFo(m —p) |/

?

p=i—1

20

4 ) N N3 . =i
\\‘&\\ 81 (0) = —4 V"AFo(m-—p)'Z@*[ ek ]”‘ ,
e — \ 7=0 /2 V AFO (m - p) p==i—1
.0 4 8 4 3 k

G (1) = gm
Fig. 1. Example of convergence HORAAQ

of the iteration sequences (J, deg?, 85 (1) =972(0).

AFo = 0.04, g"(Fo) = 0, f,, unper- where

turbed values): 1) computation of AFo = Fm_

approximations by formula (19); 2) ) b’m

by fqrmula {20). ‘ iO*[ul = Ve expl—ut ]l —u(l —@u]) {D@*[oo] = 0),

u
and ®fu} = 2A/7 gem [—n1dn is the error integral.

The numbers N; and N; are chosen from the conditions

N . N1 i . 2N, 1
‘ [VAFo(m——p)} [VAFo(m—p) S 2V AFolm—p) | ="

where € > 0 is a prespecified small quantity.

In constructing the sequence of elements qk according to (19) or (20) in each iteration it is necessary
to solve three problems of determination of the temperature T*(Fo), the function #(0, Fo), and the incre~
ment AT(uk) = Ik or pk). All these quantities can be found from (21) with corresponding values of £,
4y, and g,. For TF* we have

- b = b RY
E: 1? Gin = qu ((]g = ?}“(qg_l -+ q(,’,)) ’ Jon = '5;‘ (Qn—1 - Qn}’

for yX(0)
| E=0, =0, =%
(E'; =l =T ], ) :
for ATg(u)
E=1, qu=uf G =0(AT:=0).
From these quantities we compute
& @) = W (0),

m

S L + FY

ﬁl{ Al . r=l s
};} [(ATE-)2 - (ATH
4 ] -3
Zl[(*]n——l)z + (75
Yr = W= 0),

P T A T

n=}
k - rmkZ-k
where Fn = ATn .

The gradient methods of solving the inverse problem of heat conduction (1)-(5) were verified taking a
series of methodological examples and showed good results. As expected [2] the sequence (20) converges
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Fig. 2. Reconstruction of heat fluxes by the method of conjugate gradients (g4 is the largest value
of the desired function ¢(Fo)): a) AF = 0.01; . unperturbed values; continuous curve) exact solution;
dashes) initial approximation; points) 25th iteration; b) AFo = 0.005, q“(Fo) =0, fn, unperturbed val-
ues; continuous curve) exact solution; dashes) 11th iteration; c) AFo = 0,03, qO(Fo) =0, f,, unper-
turbed values; continuous curve) exact solution; dashes) 1st iteration; 1) second iteration; 2) 3rd
iteration; 3) approximation chosen according to discrepancy principle @th iteration); 4) 50th iteration.

somewhat faster and permits a closer approach to the minimum of functional (6) compared to (19). This is
illustrated in Fig. 1 for one of the examples.

We note that a disadvantage of the above algorithm of determining the heat flux is the absence of a
uniform convergence of the approximations (19) and (20) (the convergence occurs only in L,). Because of
condition (13) the gradient of the functional J'(q) deviates from the exact value in some neighborhood of the
end point Fo = Fo,,. This causes a distortion of the solution g(Fo) also in this neighborhood (g(Fop,)
= q"(Fop,), q'(Foy) =q" (Fo,)) (see Fig. 2a).

However, if the behavior of the function q(Fo) near the right boundary of the time interval is predicted
beforehand, then the proposed algorithm is very efficient. For example, if it is known that the desired
heat flux vanishes at Fo = Foy,, then specifying the initial approximation q°(Fo) we obtain q(Fo) very close
to the exact function (Fig. 2b).

The solution of the inverse problem is quite stable to perturbations of the input data both in the case
of the method of steepest descent andthe method of conjugategradients. This is mainly accounted for by a
significant decrease of the rate of convergence of these methods of gradient slope with the increase in the
number of iterations which in a way damps the "oscillations" of the approximations qk(Fo). The results
for the first three iterations obtained from formula (20) are shown in Fig. 2c for sufficiently large fluctua-
tion perturbations of the input data (fgn = £, + 6&p, where 6 = 10% f,5%; &n is a random quantity uniformly
distributed in the segment [—1, 1]. The last approximation is very close to the sought curve of q(Fo).

If the process of approximations is continued further, the results change very insignificantly in the
next three iterations. A gradual osecillation of the solution is observed starting from 7-8-th iteration (50-th
approximation for this example is shown in Fig, 2¢).

Computations show that it is advisable to use the discrepancy principle 4, 5] for terminating the
iteration process. Here the number of iterationsplays the role of the regularization parameter. If neces-
sary the exit to the given discrepancy level is obtained by a suitable choice of the parametric step 8. If
the input data f,, aresufficiently accurate, then for the above algorithm it is generally always possible to
specify beforehand the number of iterations (10-15) which would correspond to a reasonable proximity of
the last approximation to the actual heat flux function.

Apart from its high accuracy this algorithm is also economical in respect of computation time and
compared to the algorithms of [6, 7] it permits solution of problem of considerably larger dimensionality.
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The investigated approach can be extended to the solution of inverse problems with movable bounda-
ries [5, 8] also in nonlinear formulation.

f(n
J(@Q)

QT
q(7)
T, 7
T*(7)

NOTATION

is the thermal diffusivity;

is the right end of the interval in x;

is the given temperature dependence at the point x ='b;
is the functional to be minimized;

is the number of iteration;

is the heat flux at the point x = b;

is the desired heat flux;

is the temperature;

is the computed temperature dependence at the point x = b;
is the coordinate;

is the Fourier number;

is the thermal conductivity;

is the dimensionless coordinate;

is the time;

is the end of the investigated time interval;

is the solution of the conjugate boundary value problem;
is the increment of the corresponding quantities.
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